
1 Introduction

This document serves two purposes. The first section provides a high level overview of how the

different pieces of technology in web applications relate to each other, and how they relate to the

specific framework we will use, the Google Web Toolkit (GWT). The second provides some common

suggestions, of the sort you might receive from a team leader or senior developer on your team in

industry, and they are designed to make you more productive, and coding less tedious and frustrating.

2 Web Architecture

The original purpose of the world wide web was to store documents in a way that enabled them

to be accessed from anywhere. These documents sat on a server at a publicly accessible location, and

often linked to other documents. HTTP, the Hyper-Text Transport Protocol allowed the user's browser

to make a request for a document, and then retrieve it. The document format was HTML, The Hyper-

Text Markup Language, which is a plain-text encoding of a document that includes additional

formatting and links to other documents.

 As an example if you browse to: http://www.ubc.ca/index.html, your browser first connects to the

server and asks for the file: index.html. The server responds with the contents of the file which the

browser then parses. It will look for any other resources or files it doesn't have and then subsequently

request those from the server. In Illustration 1, the next thing it needs is header.png.

As the world wide web continued to be developed eventually static documents were replaced by

Illustration 1: Retrieving Data from the Server

programmatically generated HTML documents whose content depended on the request and other

external state information. These dynamically generated HTML pages allowed for applications to be

written that used the browser as a user interface. For instance the UBC Computer Science Groups

(https://www.cs.ubc.ca/groups) use this technique for the most part.

Making a request to the server and retrieving an entire HTML page as a response is not very

responsive, and so a programming language called JavaScript was developed that allowed programs to

run within the browser, specifically they run alongside the specific web page you are viewing. The

naming of JavaScript is unfortunate, as it is entirely unrelated to Java1.

A JavaScript process could manipulate the HTML document directly which allowed for an improved

user experience. For instance the user could be notified without contacting the server that their

password did not have the minimum number of characters required.

Still JavaScript applications were limited in that anything that required a server interaction required

having the user browse to another page or reload the current one. This effectively kills the currently

running JavaScript application, a consequence of this was that there was no point in writing complex

applications in JavaScript as they would most likely need interaction with the server to be useful, and in

order to interact with the server the application would have to be started from scratch. For instance

early web based chat rooms operated by automatically refreshing the page every few seconds.

In the early 2000's this changed with the advent of AJAX (purportedly standing for Asynchronous Java

and XML). With minor additions to the JavaScript functionality offered by browsers, JavaScript

programs could now directly request data from the server, and process the results as needed. As pages

no longer needed to be refreshed, JavaScript applications could offer a much richer user experience.

3 Web Application Development

Web application development is significantly different than traditional applications you may have

developed in previous projects or courses. Web development makes some things greatly simpler, for

instance formatting something nice is easier in HTML than it is with Swing. But some aspects are also

more complex. Web applications follow a client-server model, where the application is broken up into

several pieces, each of which has it's own state and communicates with the other as needed.

Traditional web application development often suffers from another problem from a software

engineering perspective, code duplication. Application logic, for instance the length of a password, is

often coded twice, once in JavaScript and once in whatever programming language is running on the

server. This code duplication is a problem because it makes the code brittle and can introduce

inconsistencies that are hard to detect. As JavaScript applications have become richer the amount of

code duplication has only increased.

The Google Web Toolkit (GWT), the toolkit we will use for the project, addresses this by allowing all

application logic to be coded once. It then takes part of your application and compiles it into JavaScript

(as the client) and this part runs in the user's browser. The other part of the application runs on the

server, and the two parts communicate by using AJAX.

An additional complication with web development is concurrency. The part of the application that runs

on the server is the same program for all the individual browsers using it at the same time. Managing

1 It is often said that Java is to JavaScript, as Ham is to Hamster.

state in the face of concurrent actions is difficult, but the use of a database allows most web

applications to ignore these problems and treat the individual requests individually without reasoning

about others.

4 Technology Examples

While GWT does a good job of hiding many of the details of the underlying environment the

translation isn't perfect and GWT only lessens the burden on the developer to know the underlying

environment.

HTML:

The Hyper-Text Markup Language is a document format (like PDF, DOC, or ODT) for encoding a

document. Unlike most other document formats you are used to, it is designed to be human readable

(you can edit the file without any special utilities like Microsoft Word).

The ex1/ folder contains a simple html document (index.html) that you can open and play with in your

browser. It is very bare and spartan (see Illustration 2), but contains the logical structure of the

document.

For Your Project:

• When you create a GWT project, it will have an associated HTML file. You can edit this file to

add more content as needed.

• If you are trying to do something fancy with the User Interface, it is often easier to prototype in

HTML than it is to write the code that generates it directly.

Further Reference:

1) W3C Schools HTML Tutorial (http://www.w3schools.com/html/default.asp)

2) Head First HTML with CSS & XHTML (Book)

CSS:

A Cascading Style Sheets (CSS) file is a file that contains visual or presentation information about a

document. In the ex2/ folder our web-page has been modified to reference another file example.css.

When this file is linked, the look of the page has changed significantly but if you look closely we

haven't really changed anything in the HTML file from the previous example.

Illustration 2: Bare HTML Document in Browser

Keep In Mind:

CSS support varies between different browsers and within the same browser across versions. A layout

that works in one browser may be very broken in another. Quirksmode

(http://www.quirksmode.org/css/contents.html) lists the difference between browsers and may prove

helpful if you are running into issues with CSS not working in your browser.

For Your Project:

• You can for the most part manipulate the visual elements of your site fairly easily in GWT

directly using the built in widgets.

• Editing the CSS file of your project is certainly cleaner but by no means required in this project.

• You can create many rules in your CSS file, and then alter the style of your widgets (see the

third reference), to create more complicated effects like animations.

Illustration 3: CSS Styling

Further Reference:

1) W3C Schools CSS Tutorial (http://www.w3schools.com/css/).

2) Head First HTML with CSS & XHTML (Book)

3) Developer's Guide – CSS Style (https://developers.google.com/web-

toolkit/doc/latest/DevGuideUiCss)

JavaScript:

JavaScript is the predominant programming language supported in browsers for client side

programming, and ex3/ contains an example of such a program in the example.js file. Now included at

the bottom is a text box where you can add elements to the list. JavaScript is very powerful and can

build the entire web page programmatically (this is what GWT does for the most part).

Illustration 4: JavaScript Functionality

Keep In Mind:

Javascript is much better supported across browsers, but one aspect that is weak is support for events

like detecting a mouse wheel or the key press event. Quirksmode

(http://www.quirksmode.org/dom/events/index.html) lists the differences between browsers and may

prove helpful if you are running into issues with some event-based code working in your browser.

For Your Project:

Of the three things we have seen so far, JavaScript is the thing you are least likely to interact with

directly in your project. It is however the one that influences your project the most.

• When your project is running, it is running as JavaScript and the restrictions on Java support

listed here (https://developers.google.com/web-

toolkit/doc/latest/DevGuideCodingBasicsCompatibility), are a direct consequence of this.

• JavaScript applications are very limited in what external things they can access. They cannot

open files, communicate with other servers, talk to databases, etc...

• Occasionally you may have better luck consulting the Javascript documentation or bug reports

for a library such as Google Maps, and then figuring out how to apply them to GWT.

• If you are already proficient with JavaScript, GWT supports the JSNI which allows invoking

JavaScript functions from GWT.

Further Reference:

1) W3C Schools JavaScript Tutorial (http://www.w3schools.com/js/default.asp).

Other Technologies

There are a few other technologies we are using that you may see mentioned when working on your

project.

Cookie

A cookie is a value that a server can ask the browser to send back to the server, whenever it makes

subsequent requests to the server. Functionality like website login is implemented using cookies. When

you successfully login, you are given a cookie that you will resend to the server with every subsequent

request. This cookie can be used to tie your requests to your login information. For the most part GWT

handles this for you automatically.

Servlet

Loosely speaking a Servlet is a single Java object that accepts requests. These requests are typically

made over HTTP. They are handled by Web Servers called Servlet Containers. The Web Server that

runs your application in development mode is a Servlet Container called Jetty. GWT abstracts most of

this away for you. For the most part your only interaction with anything related to Servlets will be

modifying the web.xml file. For more information on Servlets see:

http://docs.oracle.com/javaee/6/tutorial/doc/bnafd.html.

NOTE: Every Servlet has exactly one instance and all member variables of a Servlet are shared

between all users of your web application.

AJAX

Asynchronous JavaScript and XML is the technique that allows JavaScript applications to

communicate with the server in the background. In GWT, this is handled by the Service and

Asynchronous Service implementations.

NOTE: These Service interfaces are the boundary between the part of your application that runs in an

individual user's browser and the part of the application that runs on the server and is shared with all

clients. The Service implementation is in fact a Servlet.

DOM

Document Object Model refers to the representation of an HTML or XML document in memory as a

tree. It is what was used in ex3/ to add items to the list. In GWT manipulating the HTML document is

done through the DOM. The DOM class in GWT (http://google-web-

toolkit.googlecode.com/svn/javadoc/2.5/com/google/gwt/user/client/DOM.html) roughly corresponds

to the HTML Document Object Model (http://www.w3schools.com/htmldom/default.asp) and gives

you the same access as the JavaScript one http://www.w3schools.com/js/js_ex_dom.asp.

